Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Постройте окружность данного радиуса, касающуюся двух данных прямых.

Вниз   Решение


Внутри треугольника имеются две точки. Расстояние от одной из них до сторон треугольника равны 1, 3 и 15, а от другой (в том же порядке) – 4, 5 и 11.
Найдите радиус вписанной окружности данного треугольника.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 52779

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 3
Классы: 8,9

Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.

Прислать комментарий     Решение


Задача 56666

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Через точку P, лежащую на общей хорде AB двух пересекающихся окружностей, проведены хорда KM первой окружности и хорда LN второй окружности. Докажите, что четырехугольник KLMN вписанный.
Прислать комментарий     Решение


Задача 56669

Тема:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8

В параллелограмме ABCD диагональ AC больше диагонали BDM — такая точка диагонали AC, что четырехугольник BCDM вписанный. Докажите, что прямая BD является общей касательной к описанным окружностям треугольников ABM и ADM.
Прислать комментарий     Решение


Задача 55411

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

Прислать комментарий     Решение

Задача 56670

Тема:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8

Даны окружность S и точки A и B вне ее. Для каждой прямой l, проходящей через точку A и пересекающей окружность S в точках M и N, рассмотрим описанную окружность треугольника BMN. Докажите, что все эти окружности имеют общую точку, отличную от точки B.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .