ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Треугольник ABC вписан в
окружность с центром в O . X "– произвольная точка внутри
треугольника ABC , такая, что Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны? Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.) Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10? В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника. Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет? В пространстве заданы три луча: DA, DB и DC,
имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°.
Сфера пересекает луч DA в точках A1 и A2, луч
DB – в точках B1 и B2, луч DC
– в точках C1 и C2.
Найдите площадь треугольника A2B2C2,
если площади треугольников DA1B1,
DA1C1, DB1C1 и
DA2B2 равны соответственно
Решить уравнение (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0. На юбилей 57-й школы Московский Монетный Двор выпустил юбилейные монеты достоинством в 57 копеек. А на юбилей 239-й школы монеты достоинством в 239 копеек выпустил Санкт-Петербургский Монетный Двор. Чтобы никому не было обидно, количество денег, выпущенных оба раза, было одинаково. Смогут ли Олег и 36 его друзей разделить все выпущенные монеты так, чтобы каждому досталось одинаковое количество монет? Сколько нулей, единиц, троек? Подряд выписаны все целые числа от 1 до 100. Сколько раз в этой записи встречаются цифры: а) нуль? б) единица; в)три? |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 644]
Из числа 1234567...5657585960 вычеркнуть 100 цифр так, чтобы оставшееся число было: а) наименьшим; б) наибольшим.
Сколько нулей, единиц, троек? Подряд выписаны все целые числа от 1 до 100. Сколько раз в этой записи встречаются цифры: а) нуль? б) единица; в)три?
Трехзначное число. Трехзначное число начинается с цифры 4. Если эту цифру перенести в конец числа, то получится число, составляющее 0,75 исходного. Найти исходное число.
Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).
Ищем верное утверждение. В тетради написано сто утверждений:
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке