Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 391]
|
|
Сложность: 3 Классы: 7,8,9
|
Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
|
|
Сложность: 3 Классы: 5,6,7
|
Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?
На острове Контрастов живут и рыцари, и лжецы. Рыцари всегда говорят правду, лжецы всегда лгут. Некоторые жители заявили, что на острове чётное число рыцарей, а остальные заявили, что на острове нечётное число лжецов. Может ли число жителей острова быть нечётным?
|
|
Сложность: 3 Классы: 5,6,7
|
Можно ли разрезать прямоугольник размерами 78×55 см на прямоугольники 5×11 см?
[Делимость на n]
|
|
Сложность: 3 Классы: 7,8,9
|
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 391]