Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дана пирамида ABCD . Сфера касается плоскостей DAB , DAC и DBC в точках K , L и M соответственно. При этом точка K находится на стороне AB , точка L – на стороне AC , точка M – на стороне BC . Известно, что радиус сферы равен 3, ADB = 90o , BDC = 105o , ADC = 75o . Найдите объём пирамиды.

Вниз   Решение


В классе все увлекаются математикой или биологией. Сколько человек в классе, если математикой занимаются 15 человек, биологией – 20, а математикой и биологией – 10?

ВверхВниз   Решение


Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга?

ВверхВниз   Решение


В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?

ВверхВниз   Решение


а) Какое максимальное количество слонов можно расставить на доске 1000 на 1000 так, чтобы они не били друг друга?
б) Какое максимальное количество коней можно расставить на доске 8×8 так, чтобы они не били друг друга?

ВверхВниз   Решение


В треугольной пирамиде ABCD известно, что AB CD , AC BD , AC = BD , BC = a . Кроме того, известно, что некоторый шар касается всех рёбер этой пирамиды. Найдите радиус шара.

ВверхВниз   Решение


Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 7958]      



Задача 103800

Тема:   [ Задачи-шутки ]
Сложность: 2-
Классы: 5,6,7

В двух кошельках лежат две монеты, причём в одном кошельке монет вдвое больше, чем в другом. Как такое может быть?

Прислать комментарий     Решение


Задача 103812

Темы:   [ Арифметические действия. Числовые тождества ]
[ Ребусы ]
Сложность: 2-
Классы: 6

Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

Прислать комментарий     Решение


Задача 103820

Темы:   [ Трапеции (прочее) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2-
Классы: 7

Четырёхугольник с длинами сторон 1, 1, 1 и 2 имеет две параллельные стороны и разбит на четыре одинаковые фигуры (см. рисунок). В результате верхняя сторона разделилась на четыре отрезка. Найдите отношение длины большего отрезка к меньшему.

Прислать комментарий     Решение

Задача 103826

Темы:   [ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2-
Классы: 6

Расположите в кружочках (вершинах правильного десятиугольника) числа от 1 до 10 так, чтобы для любых двух соседних чисел их сумма была равна сумме двух чисел, им противоположных (симметричных относительно центра окружности).

Прислать комментарий     Решение


Задача 104080

Темы:   [ Обыкновенные дроби ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2-
Классы: 5,6,7

Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 7958]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .