Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Вниз   Решение


Автор: Антонов М.

Правильный треугольник разбит на правильные треугольники со стороной 1 линиями, параллельными его сторонам и делящими каждую сторону на n частей (на рисунке  n = 5).

Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?

ВверхВниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

ВверхВниз   Решение


Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)

ВверхВниз   Решение


Натуральное число N в 999...99 (k девяток) раз больше суммы своиx цифр. Укажите все возможные значения k и для каждого из них приведите пример такого числа.

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

ВверхВниз   Решение


У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?

ВверхВниз   Решение


Найдите все такие функции  f(x), что  f(2x + 1) = 4x² + 14x + 7.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 104102  (#1)

Темы:   [ Монотонность и ограниченность ]
[ Тригонометрические уравнения ]
[ Смешанные уравнения и системы уравнений ]
Сложность: 3
Классы: 9,10

Решите систему уравнений:
    x² + 4sin²y – 4 = 0,
    cos x – 2cos²y – 1 = 0.

Прислать комментарий     Решение

Задача 104103  (#2)

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2
Классы: 7,8,9

Остап Бендер и Киса Воробьянинов разделили между собой выручку от продажи слонов населению. Остап подумал: если бы я взял денег на 40% больше, то доля Кисы уменьшилась бы на 60%. А как изменилась бы доля Воробьянинова, если бы Остап взял себе денег на 50% больше?

Прислать комментарий     Решение

Задача 104104  (#3)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Характеристические свойства и рекуррентные соотношения ]
Сложность: 2+
Классы: 7,8,9

Найдите все такие функции  f(x), что  f(2x + 1) = 4x² + 14x + 7.

Прислать комментарий     Решение

Задача 97810  (#4)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.

Прислать комментарий     Решение

Задача 104106  (#5)

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Из точки, не лежащей в плоскости, проведены к этой плоскости перпендикуляр и три наклонные, проекции которых на данную плоскость равны a, b и c. Найдите длину перпендикуляра, если наклонные образуют с плоскостью углы, сумма которых равна 90°.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .