ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 105077

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 4+
Классы: 7,8,9,10

Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

Прислать комментарий     Решение

Задача 108133

Темы:   [ Касающиеся окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Пересекающиеся окружности ]
[ Диаметр, основные свойства ]
[ Вписанный угол, опирающийся на диаметр ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Общие четырехугольники ]
Сложность: 5-
Классы: 8,9

ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| .
Прислать комментарий     Решение


Задача 105088

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Итерации ]
[ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Последовательности (прочее) ]
[ Процессы и операции ]
Сложность: 5-
Классы: 9,10,11

Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn})  разрешается получать последовательности  {bn + cn},
{bn – cn},  {bncn}  и  {bn/cn}  (если все члены последовательности {cn} отличны от 0). Кроме того, из любой имеющейся последовательности можно получить новую, вычеркнув несколько начальных членов. Сначала есть только последовательность {an}. Можно ли получить из неё описанными выше операциями последовательность {n}, то есть 1, 2, 3, 4, ..., если
  а)  an = n²;

  б)  

  в)  

Прислать комментарий     Решение

Задача 105089

Темы:   [ Математическая логика (прочее) ]
[ Криптография ]
[ Деление с остатком ]
Сложность: 5-
Классы: 8,9,10

Из колоды вынули семь карт, показали всем, перетасовали и раздали Грише и Лёше по три карты, а оставшуюся карту
  а) спрятали;
  б) отдали Коле.
Гриша и Лёша могут по очереди сообщать вслух любую информацию о своих картах. Могут ли они сообщить друг другу свои карты так, чтобы при этом Коля не смог вычислить местонахождение ни одной из тех карт, которых он не видит? (Гриша и Лёша не договаривались о каком-либо особом способе общения; все переговоры происходят открытым текстом.)

Прислать комментарий     Решение

Задача 105093

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Кубические многочлены ]
[ Теорема о промежуточном значении. Связность ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
Сложность: 5-
Классы: 8,9,10,11

У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .