ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 105084

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Площади криволинейных фигур ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 9,10,11

Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.
Прислать комментарий     Решение


Задача 105085

Темы:   [ Итерации ]
[ Квадратный трехчлен (прочее) ]
[ Уравнения высших степеней (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть   f(x) = x² + 12x + 30.  Решите уравнение   f(f(f(f(f(x))))) = 0.

Прислать комментарий     Решение

Задача 105086

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь многоугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь трапеции ]
[ Геометрия на клетчатой бумаге ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 9,10,11

На бумаге "в клеточку" нарисован выпуклый многоугольник M, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри M, равна сумме длин горизонтальных отрезков линий сетки внутри M.

Прислать комментарий     Решение

Задача 108133

Темы:   [ Касающиеся окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Пересекающиеся окружности ]
[ Диаметр, основные свойства ]
[ Вписанный угол, опирающийся на диаметр ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Общие четырехугольники ]
Сложность: 5-
Классы: 8,9

ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| .
Прислать комментарий     Решение


Задача 105088

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Итерации ]
[ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Последовательности (прочее) ]
[ Процессы и операции ]
Сложность: 5-
Классы: 9,10,11

Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn})  разрешается получать последовательности  {bn + cn},
{bn – cn},  {bncn}  и  {bn/cn}  (если все члены последовательности {cn} отличны от 0). Кроме того, из любой имеющейся последовательности можно получить новую, вычеркнув несколько начальных членов. Сначала есть только последовательность {an}. Можно ли получить из неё описанными выше операциями последовательность {n}, то есть 1, 2, 3, 4, ..., если
  а)  an = n²;

  б)  

  в)  

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .