ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма? Решение |
Страница: 1 2 >> [Всего задач: 6]
Докажите, что любой квадратный трёхчлен можно представить в виде суммы двух квадратных трёхчленов с нулевыми дискриминантами.
Докажите, что для любого натурального числа d существует делящееся на него натуральное число n, в десятичной записи которого можно вычеркнуть некоторую ненулевую цифру так, что получившееся число тоже будет делиться на d.
Треугольник ABC с острым углом ∠A = α вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины B, делит треугольник ABC на две части одинаковой площади. Найдите угол B.
Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
Для заданных натуральных чисел
k0<k1<k2 выясните,
какое наименьшее число корней на промежутке sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0 где A1, A2 – вещественные числа.
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|