ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что все числа 10017, 100117, 1001117, ... делятся на 53.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107772

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3
Классы: 7,8,9

М.В. Ломоносов тратил одну денежку на хлеб и квас. Когда цены выросли на 20%, на ту же денежку он приобретал полхлеба и квас.
Хватит ли той же денежки хотя бы на квас, если цены еще раз вырастут на 20%?

Прислать комментарий     Решение

Задача 107773

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Докажите, что все числа 10017, 100117, 1001117, ... делятся на 53.

Прислать комментарий     Решение

Задача 107777

Темы:   [ Правильные многоугольники ]
[ Шестиугольники ]
[ Вспомогательные равные треугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).

Прислать комментарий     Решение

Задача 107775

Темы:   [ Боковая поверхность параллелепипеда ]
[ Площадь и объем (задачи на экстремум) ]
[ Объем параллелепипеда ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Автор: Ботин Д.А.

Достаточно ли для изготовления закрытой со всех сторон прямоугольной коробки, вмещающей не менее 1995 единичных кубиков,
  а) 962;   б) 960;   в) 958 квадратных единиц материала?

Прислать комментарий     Решение

Задача 108187

Темы:   [ Средняя линия треугольника ]
[ Поворот помогает решить задачу ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Четырехугольники (прочее) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

Дан выпуклый четырёхугольник ABCD и точка O внутри него. Известно, что  ∠AOB = ∠COD = 120°,  AO = OB  и  CO = OD.  Пусть K, L и M – середины отрезков AB, BC и CD соответственно. Докажите, что
  а)  KL = LM;
  б) треугольник KLM – правильный.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .