ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть a, b, c, d, e и f – некоторые числа, причём ace ≠ 0. Известно, что значения выражений |ax + b| + |cx + d| и |ex + f | равны при всех значениях x. Точка I – центр вписанной окружности треугольника ABC, M – середина стороны AC, а W – середина дуги AB описанной окружности, не содержащей C. Оказалось, что ∠AIM = 90°. В каком отношении точка I делит отрезок CW? Докажите, что для любого натурального числа n > 1 найдутся такие натуральные числа a, b, c, d, что a + b = c + d = ab – cd = 4n. На плоскости отметили 30 точек, никакие три из которых не лежат на одной прямой, и провели семь красных прямых, не проходящих через отмеченные точки. Могло ли случиться, что каждый отрезок, соединяющий какие-то две отмеченные точки, пересекается хоть с одной красной прямой? a и b – натуральные числа. Известно, что a² + b² делится на ab. Докажите, что a = b. Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным. В остроугольном треугольнике $ABC$ с высотой $AH=h$ проведена прямая через центры $O$ и $I$ описанной и вписанной окружностей. Эта прямая пересекает стороны $AB$ и $AC$ в точках $F$ и $N$ соответственно, причем около четырехугольника $BFNC$ можно описать окружность. Найдите сумму расстояний от ортоцентра треугольника $ABC$ до его вершин. Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80. Бессмертная блоха прыгает по целым точкам на числовой прямой, стартуя с точки 0. Длина первого прыжка равна 3, второго – 5, третьего – 9, и так далее (длина k-го прыжка равна 2k + 1). Направление прыжка (вправо или влево) блоха выбирает самостоятельно. Может ли так случиться, что блоха рано или поздно побывает в каждой натуральной точке (возможно, побывав в некоторых точках больше, чем по разу)? Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны. Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году? Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше? Решите уравнение $$\tan\pi {}x = [\lg \pi^x]-[\lg [\pi^x]],$$ где $[a]$ обозначает наибольшее целое число, не превосходящее $a$. По кругу записаны 100 целых чисел. Каждое из чисел больше суммы двух чисел, следующих за ним по часовой стрелке. Дан вписанный четырехугольник $ABCD$. Прямые $AB$ и $DC$ пересекаются в точке $E$, а прямые $BC$ и $AD$ — в точке $F$. В треугольнике $AED$ отмечен центр вписанной окружности $I$, а из точки $F$ проведен луч, перпендикулярный биссектрисе угла $AID$. В каком отношении этот луч делит угол $AFB$? Можно ли отметить k вершин правильного 14-угольника так, что каждый четырёхугольник с вершинами в отмеченных точках, имеющий две параллельные стороны, является прямоугольником, если: а) k = 6; б) k ≥ 7? Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что PQ || BC. На одной стороне угла с вершиной O взята точка A, а на другой – точки B и C, причём точка B лежит между O и C. Проведена окружность с центром O1, вписанная в треугольник OAB, и окружность с центром O2, касающаяся стороны AC и продолжений сторон OA и OC треугольника AOC. Докажите, что если O1A = O2A, то треугольник ABC равнобедренный. |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?
На одной стороне угла с вершиной O взята точка A, а на другой – точки B и C, причём точка B лежит между O и C. Проведена окружность с центром O1, вписанная в треугольник OAB, и окружность с центром O2, касающаяся стороны AC и продолжений сторон OA и OC треугольника AOC. Докажите, что если O1A = O2A, то треугольник ABC равнобедренный.
На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек, причем никакие три из отмеченных точек не лежат на одной прямой. Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не более четверти суммы площадей всех треугольников с отмеченными вершинами.
Гидры состоят из голов и шей (каждая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить её на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более чем N ударов.
На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)
Страница: 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке