ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём  ∠AMO = ∠MAD.
Докажите, что точка M равноудалена от точек C и D.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 107849

Тема:   [ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

Прислать комментарий     Решение

Задача 107866

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Деление с остатком ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 8,9,10

Решите в натуральных числах уравнение  3x + 4y = 5z.

Прислать комментарий     Решение

Задача 108163

Темы:   [ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём  ∠AMO = ∠MAD.
Докажите, что точка M равноудалена от точек C и D.

Прислать комментарий     Решение

Задача 107854

Темы:   [ Связность и разложение на связные компоненты ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4
Классы: 8,9,10

В стране Нашии есть военные базы, соединённые дорогами. Набор дорог называется важным, если после закрытия этих дорог найдутся две базы, не соединённые путем. Важный набор называется стратегическим, если он не содержит меньшего важного набора. Докажите, что множество дорог, каждая из которых принадлежит ровно одному из двух различных стратегических наборов, образует важный набор.

Прислать комментарий     Решение

Задача 107860

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
[ Полуинварианты ]
Сложность: 4
Классы: 8,9,10

Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .