ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых  AL = AB  и
CN = CB.  Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107851

Темы:   [ Арифметические действия. Числовые тождества ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 7,8,9

Является ли число  49 + 610 + 320  простым?

Прислать комментарий     Решение

Задача 107853

Темы:   [ Математическая логика (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 7,8,9

Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.

Прислать комментарий     Решение

Задача 108164

Темы:   [ Перегруппировка площадей ]
[ Вспомогательные подобные треугольники ]
[ Площадь параллелограмма ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых  AL = AB  и
CN = CB.  Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.

Прислать комментарий     Решение

Задача 107854

Темы:   [ Связность и разложение на связные компоненты ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4
Классы: 8,9,10

В стране Нашии есть военные базы, соединённые дорогами. Набор дорог называется важным, если после закрытия этих дорог найдутся две базы, не соединённые путем. Важный набор называется стратегическим, если он не содержит меньшего важного набора. Докажите, что множество дорог, каждая из которых принадлежит ровно одному из двух различных стратегических наборов, образует важный набор.

Прислать комментарий     Решение

Задача 108165

Темы:   [ Отрезок, видимый из двух точек под одним углом ]
[ Ромбы. Признаки и свойства ]
[ ГМТ и вписанный угол ]
[ ГМТ - окружность или дуга окружности ]
[ Ромбы. Признаки и свойства ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 8,9

Точка O лежит внутри ромба ABCD . Угол DAB равен 110o . Углы AOD и BOC равны 80o и 100o соответственно. Чему может быть равен угол AOB ?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .