ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

  а) Каждая сторона равностороннего треугольника разбита на m равных частей, и через точки деления проведены прямые, параллельные сторонам, разрезавшие треугольник на m² маленьких треугольников. Среди вершин полученных треугольников нужно отметить N вершин так, чтобы ни для каких двух отмеченных вершин A и B отрезок АВ не был параллелен ни одной из сторон. Каково наибольшее возможное значение N (при заданном m)?

  б) Разделим каждое ребро тетраэдра на m равных частей и через точки деления проведём плоскости, параллельные граням. Среди вершин полученных многогранников отметим N вершин так, чтобы никакие две отмеченные вершины не лежали на прямой, параллельной одной из граней. Каково наибольшее возможное N?

  в) Среди решений уравнения  x1 + x2 + ... + xk = m  в целых неотрицательных числах нужно выбрать N решений так, чтобы ни в каких двух из выбранных решений ни одна переменная xi не принимала одного и того же значения. Чему равно наибольшее возможное значение N?

Вниз   Решение


Из точки A проведены касательные AB и AC к окружности и секущая, пересекающая окружность в точках D и EM — середина отрезка BC. Докажите, что  BM2 = DM . ME и угол DME в два раза больше угла DBE или угла DCE; кроме того,  $ \angle$BEM = $ \angle$DEC.

ВверхВниз   Решение


На сторонах AB , BC и AC треугольника ABC взяты точки C' , A' и B' соответственно. Докажите, что площадь треугольника A'B'C' равна

,

где R – радиус описанной окружности треугольника ABC .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 35621

Темы:   [ Вычисление интегралов ]
[ Тождественные преобразования (тригонометрия) ]
[ Симметрия и инволютивные преобразования ]
Сложность: 4-
Классы: 11

Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.
Прислать комментарий     Решение


Задача 108170

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

На сторонах AB , BC и AC треугольника ABC взяты точки C' , A' и B' соответственно. Докажите, что площадь треугольника A'B'C' равна

,

где R – радиус описанной окружности треугольника ABC .
Прислать комментарий     Решение

Задача 107843

Темы:   [ Алгебраические неравенства (прочее) ]
[ Замена переменных ]
[ Тождественные преобразования ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 8,9,10

Положительные числа a, b и c таковы, что  abc = 1.  Докажите неравенство

+ + ≤ 1.

Прислать комментарий     Решение

Задача 107842

Темы:   [ Правильный тетраэдр ]
[ Основные свойства и определения правильных многогранников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 10,11

Можно ли разбить правильный тетраэдр с ребром 1 на правильные тетраэдры и октаэдры, длины ребер каждого из которых меньше 1/100?
Прислать комментарий     Решение


Задача 107841

Темы:   [ Инварианты ]
[ Производная в точке ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Комплексные числа помогают решить задачу ]
Сложность: 5+
Классы: 10,11

  На доске написаны три функции:  f1(x) = x + 1/x,   f2(x) = x²,   f3(x) = (x – 1)².  Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x.
  Докажите, что если стереть с доски любую из функций  f1,  f2,  f3, то получить 1/x невозможно.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .