Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

Вниз   Решение


Последовательность (an) задана условиями a1= 1000000 , an+1=n[]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.

ВверхВниз   Решение


Автор: Шмаров В.

Дан выпуклый четырёхугольник ABCD . Пусть P и Q – точки пересечения лучей BA и CD , BC и AD соответственно, а H – проекция D на PQ . Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда вписанные окружности треугольников ADP и CDQ видны из точки H под равными углами.

ВверхВниз   Решение


Докажите, что если a, b, c – положительные числа и  ab + bc + ca > a + b + c,  то  a + b + c > 3.

ВверхВниз   Решение


Автор: Сонкин М.

Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?

ВверхВниз   Решение


Верно ли, что из произвольного треугольника можно вырезать три равные фигуры, площадь каждой из которых больше четверти площади треугольника?

ВверхВниз   Решение


Существует ли такая бесконечная периодическая последовательность, состоящая из букв a и b, что при одновременной замене всех букв a на aba и букв b на bba она переходит в себя (возможно, со сдвигом)?

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если  AB = AE = ED = 1,  то  BC + CD  < 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 108200  (#94.4.10.3)

Темы:   [ Описанные четырехугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O вписана в четырёхугольник ABCD и касается его непараллельных сторон BC и AD в точках E и F соответственно. Пусть прямая AO и отрезок EF пересекаются в точке K , прямая DO и отрезок EF – в точке N , а прямые BK и CN – в точке M . Докажите, что точки O , K , M и N лежат на одной окружности.
Прислать комментарий     Решение


Задача 109583  (#94.4.10.4)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Деление с остатком ]
[ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 7,8,9

Прямоугольник m×n разрезан на уголки:

Докажите, что разность между количеством уголков вида a и количеством уголков вида b делится на 3.

Прислать комментарий     Решение

Задача 60470  (#94.4.10.5)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9

Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.

Прислать комментарий     Решение

Задача 109585  (#94.4.10.6)

Темы:   [ Целочисленные и целозначные многочлены ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и  P(19) = P(94) = 1994.

Прислать комментарий     Решение

Задача 108201  (#94.4.10.7)

Темы:   [ Пятиугольники ]
[ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Принцип Дирихле (углы и длины) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4+
Классы: 7,8,9,10

В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если  AB = AE = ED = 1,  то  BC + CD  < 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .