Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Квадрат n×n ( n 3 ) склеен в цилиндр. Часть клеток покрашена в черный цвет. Докажите, что найдутся две параллельных линии (две горизонтали, две вертикали или две диагонали), содержащие одинаковое количество черных клеток.

Вниз   Решение


Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды со стороной основания a и высотой h .

ВверхВниз   Решение


Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что  MI = r/3  тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.

ВверхВниз   Решение


При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

ВверхВниз   Решение


В остроугольном треугольнике проведены высоты AA' и BB'. На дуге ACB описанной окружности треугольника ABC выбрана точка D. Пусть прямые AA' и BD пересекаются в точке P, а прямые BB' и AD пересекаются в точке Q. Докажите, что прямая A'B' проходит через середину отрезка PQ.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]      



Задача 109833  (#05.5.9.4)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 5-
Классы: 8,9,10

Автор: Гарбер М.

На столе лежат 365 карточек, на обратной стороне которых написаны различные числа. За один рубль Вася может выбрать три карточки и попросить Петю положить их слева направо так, чтобы числа на карточках располагались в порядке возрастания. Может ли Вася, потратив 2000 рублей, с гарантией выложить все 365 карточек на стол слева направо так, чтобы числа на них располагались в порядке возрастания?

Прислать комментарий     Решение

Задача 109834  (#05.5.9.5)

Темы:   [ Рациональные и иррациональные числа ]
[ Теория графов (прочее) ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 5-
Классы: 9,10,11

Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.

Прислать комментарий     Решение

Задача 109835  (#05.5.9.6)

Темы:   [ Задачи с ограничениями ]
[ Квадратные уравнения. Теорема Виета ]
[ Двоичная система счисления ]
Сложность: 5+
Классы: 9,10,11

Сколькими способами числа 20, 21, 2², ..., 22005 можно разбить на два непустых множества A и B так, чтобы уравнение  x² – S(A)x + S(B) = 0,  где S(M) – сумма чисел множества M, имело целый корень?

Прислать комментарий     Решение

Задача 108225  (#05.5.9.7)

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 5-
Классы: 8,9

В остроугольном треугольнике проведены высоты AA' и BB'. На дуге ACB описанной окружности треугольника ABC выбрана точка D. Пусть прямые AA' и BD пересекаются в точке P, а прямые BB' и AD пересекаются в точке Q. Докажите, что прямая A'B' проходит через середину отрезка PQ.

Прислать комментарий     Решение

Задача 109837  (#05.5.9.8)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Индукция в геометрии ]
[ Процессы и операции ]
Сложность: 5
Классы: 8,9,10

За круглым столом сидят 100 представителей 50 стран, по двое от каждой страны. Докажите, что их можно разбить на две группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и каждый человек находился в одной группе не более чем с одним своим соседом.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .