ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На продолжении AB, BC, CD и DA сторон выпуклого четырёхугольника ABCD откладываются отрезки BB1=AB; CC1=BC; DD1=CD; AA1=AD . Доказать, что площадь четырёхугольника A1B1C1D1 в пять раз больше площади четырёхугольника ABCD .

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 109167

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9

Вершины тысячеугольника занумерованы числами от 1 до 1000. Начиная с первой, отмечается каждая пятнадцатая вершина (1, 16, 31 и т.д.). Вершины отмечаются до тех пор, пока не окажется, что все отмечаемые вершины уже найдены. Сколько вершин останутся неотмеченными?

Прислать комментарий     Решение

Задача 109008

Темы:   [ Медиана делит площадь пополам ]
[ Перегруппировка площадей ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

На продолжении AB, BC, CD и DA сторон выпуклого четырёхугольника ABCD откладываются отрезки BB1=AB; CC1=BC; DD1=CD; AA1=AD . Доказать, что площадь четырёхугольника A1B1C1D1 в пять раз больше площади четырёхугольника ABCD .
Прислать комментарий     Решение


Задача 109163

Темы:   [ Тригонометрические уравнения ]
[ Монотонность и ограниченность ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3+
Классы: 9,10,11

Найти все действительные решения уравнения x2+2x sin xy+1=0 .
Прислать комментарий     Решение


Задача 109010

Темы:   [ Диаметр, основные свойства ]
[ Окружности (построения) ]
[ Построение треугольников по различным элементам ]
Сложность: 4-
Классы: 8,9

Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.
Прислать комментарий     Решение


Задача 109005

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9,10

Может ли число  1·2 + 2·3 + ... + k(k + 1)  при  k = 6p – 1  быть квадратом?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .