ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Доказать, что не более одной вершины тетраэдра обладает тем свойством, что сумма любых двух плоских углов при этой вершине больше 180o.

Вниз   Решение


Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109596  (#95.5.11.1)

Темы:   [ Геометрическая прогрессия ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Простые числа и их свойства ]
Сложность: 4-
Классы: 9,10,11

Могут ли все числа 1, 2, 3 ... 100 быть членами 12 геометрических прогрессий?

Прислать комментарий     Решение

Задача 109597  (#95.5.11.2)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Свойства симметрий и осей симметрии ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

Докажите, что любую функцию, определённую на всей оси, можно представить в виде суммы двух функций, график каждой из которой имеет ось симметрии.

Прислать комментарий     Решение

Задача 109598  (#95.5.11.3)

Темы:   [ Необычные построения ]
[ Элементарные (основные) построения циркулем и линейкой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки подобия ]
[ Предел последовательности, сходимость ]
Сложность: 5-
Классы: 9,10,11

На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(n) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии n (n – натуральное). ЛЦ(n) – то же, но циркулем и линейкой. Докажите, что последовательность    неограничена.

Прислать комментарий     Решение

Задача 109604  (#95.5.11.4)

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 6
Классы: 9,10,11

Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.
Прислать комментарий     Решение


Задача 109599  (#95.5.11.5)

Темы:   [ Ограниченность, монотонность ]
[ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
[ Примеры и контрпримеры. Конструкции ]
[ Последовательности (прочее) ]
Сложность: 5-
Классы: 9,10,11

Докажите, что для любого натурального числа a1 > 1 существует такая возрастающая последовательность натуральных чисел  a1, a2, a3, ...,
что      делится на  a1 + a2 + ... + ak  при всех  k ≥ 1.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .