ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Во всех рациональных точках действительной прямой расставлены целые числа. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]
В треугольнике ABC окружность, проходящая через вершины A и B, касается прямой BC, а окружность, проходящая через вершины B и C, касается прямой AB и второй раз пересекает первую окружность в точке K. Пусть O – центр описанной окружности треугольника ABC. Докажите, что угол BKO – прямой.
Для некоторых положительных чисел x и y выполняется неравенство x² + y³ ≥ x³ + y4. Докажите, что x³ + y³ ≤ 2.
В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.
Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?
Во всех рациональных точках действительной прямой расставлены целые числа.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|