ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 108157  (#99.5.10.6)

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Отношения линейных элементов подобных треугольников ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Пересекающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В треугольнике ABC окружность, проходящая через вершины A и B, касается прямой BC, а окружность, проходящая через вершины B и C, касается прямой AB и второй раз пересекает первую окружность в точке K. Пусть O – центр описанной окружности треугольника ABC. Докажите, что угол BKO – прямой.

Прислать комментарий     Решение

Задача 109697  (#99.5.10.7)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Для некоторых положительных чисел x и y выполняется неравенство  x² + y³ ≥ x³ + y4.  Докажите, что  x³ + y³ ≤ 2.

Прислать комментарий     Решение

Задача 109698  (#99.5.10.8)

Темы:   [ Связность и разложение на связные компоненты ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 5
Классы: 8,9,10

В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.

Прислать комментарий     Решение

Задача 109684  (#99.5.11.1)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?

Прислать комментарий     Решение

Задача 109685  (#99.5.11.2)

Темы:   [ Рациональные и иррациональные числа ]
[ Доказательство от противного ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .