ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109698  (#99.5.10.8)

Темы:   [ Связность и разложение на связные компоненты ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 5
Классы: 8,9,10

В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.

Прислать комментарий     Решение

Задача 109684  (#99.5.11.1)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?

Прислать комментарий     Решение

Задача 109685  (#99.5.11.2)

Темы:   [ Рациональные и иррациональные числа ]
[ Доказательство от противного ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

Прислать комментарий     Решение

Задача 108158  (#99.5.11.3)

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Две касательные, проведенные из одной точки ]
[ Свойства биссектрис, конкуррентность ]
[ Ромбы. Признаки и свойства ]
Сложность: 6
Классы: 8,9,10,11

Автор: Сонкин М.

Окружность, вписанная в четырёхугольник ABCD , касается его сторон DA , AB , BC и CD в точках K , L , M и N соответственно. Пусть S1 , S2 , S3 и S4 – окружности, вписанные в треугольники AKL , BLM , CMN и DNK соответственно. К окружностям S1 и S2 , S2 и S3 , S3 и S4 , S4 и S1 проведены общие касательные, отличные от сторон четырёхугольника ABCD . Докажите, что четырёхугольник, образованный этими четырьмя касательными, – ромб.
Прислать комментарий     Решение


Задача 109694  (#99.5.11.4)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Процессы и операции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 6
Классы: 9,10,11

В квадрате n×n клеток бесконечной шахматной доски расположены n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через [] ходов.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .