ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Окружность разделена в отношении 7:11:6, и точки деления соединены между собой. Найдите углы полученного треугольника.
Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки? Докажите, что 1 + 277 + 377 + ... + 199677 делится на 1997. Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. Докажите, что N чётно. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
В треугольнике ABC ( AB < BC) точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. Докажите, что N чётно.
Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Существует ли такая бесконечная возрастающая арифметическая прогрессия
{an} из натуральных чисел, что произведение
an...an+9 делится на сумму
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке