ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны числа a, b, c.
Докажите, что хотя бы одно из уравнений  x² + (a – b)x + (b – c) = 0,  x² + (b – c)x + (c – a) = 0,  x² + (c – a)x + (a – b) = 0  имеет решение.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 111850  (#07.5.8.1)

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 8,9

Даны числа a, b, c.
Докажите, что хотя бы одно из уравнений  x² + (a – b)x + (b – c) = 0,  x² + (b – c)x + (c – a) = 0,  x² + (c – a)x + (a – b) = 0  имеет решение.

Прислать комментарий     Решение

Задача 111851  (#07.5.8.2)

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9,10

В клетках таблицы 10×10 произвольно расставлены натуральные числа от 1 до 100, каждое по одному разу. За один ход разрешается поменять местами любые два числа. Докажите, что за 35 ходов можно добиться того, чтобы сумма каждых двух чисел, стоящих в клетках с общей стороной, была составной.

Прислать комментарий     Решение

Задача 111852  (#07.5.8.3)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На стороне BC ромба ABCD выбрана точка M. Прямые, проведённые через M перпендикулярно диагоналям BD и AC, пересекают прямую AD в точках P и Q соответственно. Оказалось, что прямые PB, QC и AM пересекаются в одной точке. Чему может быть равно отношение  BM : MC?

Прислать комментарий     Решение

Задача 111853  (#07.5.8.4)

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Кооперативные алгоритмы ]
Сложность: 4-
Классы: 7,8,9

Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?
Прислать комментарий     Решение


Задача 111854  (#07.5.8.5)

Темы:   [ Задачи на движение ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .