Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 32]
Задача
111844
(#07.5.9.3)
|
|
Сложность: 4 Классы: 7,8,9
|
Два игрока по очереди проводят диагонали в правильном (2n+1)-угольнике (n > 1). Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?
Задача
111845
(#07.5.9.4)
|
|
Сложность: 4 Классы: 8,9,10
|
В треугольнике ABC проведена биссектриса BB1.
Перпендикуляр, опущенный из точки B1 на BC, пересекает дугу BC описанной окружности треугольника ABC в точке K.
Перпендикуляр опущенный из точки B на AK пересекает AC в точке L. Докажите что точки K, L и середина дуги AC (не содержащей точку B) лежат на одной прямой.
Задача
111846
(#07.5.9.5)
|
|
Сложность: 4 Классы: 8,9,10
|
В каждой вершине выпуклого 100-угольника написано по два различных числа.
Докажите, что можно вычеркнуть по одному числу в каждой вершине так,
чтобы оставшиеся числа в каждых двух соседних вершинах были различными.
Задача
111847
(#07.5.9.6)
|
|
Сложность: 4 Классы: 9,10
|
Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P (P ≠ H). Докажите, что прямая PH проходит через середину отрезка MN.
Задача
111857
(#07.5.9.7)
|
|
Сложность: 4- Классы: 8,9,10
|
В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 32]