ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что  f(n) – Qp(n)  делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что  g(n) = f(n)  для любого целого n?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116008  (#5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Интерполяционный многочлен Лагранжа ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что  f(n) – Qp(n)  делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что  g(n) = f(n)  для любого целого n?

Прислать комментарий     Решение

Задача 116251  (#5)

Темы:   [ Задачи на движение ]
[ Экстремальные свойства (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 8,9

Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?

Прислать комментарий     Решение

Задача 32889  (#5)

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Теорема Пика ]
Сложность: 4
Классы: 7,8,9

Будем называть точку плоскости узлом, если обе её координаты – целые числа. Внутри некоторого треугольника с вершинами в узлах лежит ровно два узла (возможно, какие-то еще узлы лежат на его сторонах). Докажите, что прямая, проходящая через эти два узла, либо проходит через одну из вершин треугольника, либо параллельна одной из его сторон.

Прислать комментарий     Решение

Задача 116575  (#5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Произведения и факториалы ]
Сложность: 5-
Классы: 10,11

Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
  а) 17 номеров;
  б) менее 16 номеров?

Прислать комментарий     Решение

Задача 32895  (#5)

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Параллельный перенос ]
[ Перебор случаев ]
Сложность: 4
Классы: 8,9,10

Назовём точку на плоскости узлом, если обе её координаты целые числа. Дан треугольник с вершинами в узлах, внутри него расположено не меньше двух узлов. Докажите, что среди узлов внутри треугольника можно выбрать такие два узла, что проходящая через них прямая содержит одну из вершин треугольника или параллельна одной из сторон треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .