ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что  0 < a, b, c, d < 1  и  abcd = (1 – a)(1 – b)(1 – c)(1 – d).  Докажите, что   (a + b + c + d) – (a + c)(b + d) ≥ 1.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 116381

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Числовые таблицы и их свойства ]
Сложность: 3
Классы: 8,9

В каждой клетке секретной таблицы n×n записана одна из цифр от 1 до 9. Из них получаются n-значные числа, записанные в строках слева направо и в столбцах сверху вниз. Петя хочет написать такое n-значное число без нулей в записи, чтобы ни это число, ни оно же, записанное задом наперед, не совпадало ни с одним из 2n чисел в строках и столбцах таблицы. В каком наименьшем количестве клеток Петя должен для этого узнать цифры?

Прислать комментарий     Решение

Задача 116382

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема косинусов ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD стороны равны соответственно:   AB = 10,  BC = 14,  CD = 11,  AD = 5.   Найдите угол между его диагоналями.

Прислать комментарий     Решение

Задача 116383

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8,9

Натуральные числа  a < b < c  таковы, что  b + a  делится на  b – a,  а  c + b  делится на  c – b.  Число a записывается 2011, а число b – 2012 цифрами. Сколько цифр в числе c?

Прислать комментарий     Решение

Задача 116386

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На стороне AB треугольника ABC взята такая точка P, что  AP = 2PB,  а на стороне AC – ее середина, точка Q. Известно, что  CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.

Прислать комментарий     Решение

Задача 116389

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Известно, что  0 < a, b, c, d < 1  и  abcd = (1 – a)(1 – b)(1 – c)(1 – d).  Докажите, что   (a + b + c + d) – (a + c)(b + d) ≥ 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .