Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Существует ли такие выпуклый четырёхугольник и точка P внутри него, что сумма расстояний от P до вершин больше периметра четырёхугольника?

Вниз   Решение


Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.

ВверхВниз   Решение


На стороне AB треугольника ABC внешним образом построен квадрат с центром O. Точки M и N   середины сторон AC и BC соответственно, а длины этих сторон равны соответственно a и b. Найти максимум суммы  OM + ON,  когда угол ACB меняется.

ВверхВниз   Решение


На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?

ВверхВниз   Решение


Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.

ВверхВниз   Решение


На столе лежало 100 яблок, 99 апельсинов и груши. К столу подходили ребята. Первый взял яблоко, второй – грушу, третий – апельсин, следующий опять яблоко, следующий за ним – грушу, за ним – апельсин. Далее ребята разбирали фрукты в таком же порядке до тех пор, пока стол не опустел. Сколько могло быть груш?

ВверхВниз   Решение


В комнате 12 человек; некоторые из них честные, то есть всегда говорят правду, остальные всегда лгут. "Здесь нет ни одного честного человека", - сказал первый. "Здесь не более одного честного человека", - сказал второй. Третий сказал, что честных не более двух, четвёртый - что не более трёх, и так далее до двенадцатого, который сказал, что честных людей не более одиннадцати. Сколько честных людей в комнате на самом деле?

ВверхВниз   Решение


Для двух данных различных точек плоскости A и B найдите геометрическое место таких точек C, что треугольник ABC остроугольный, а его угол A - средний по величине.

Комментарий. Под средним по величине углом мы понимаем угол, который не больше одного из углов, и не меньше другого. Так, например, мы считаем, что у равностороннего треугольника любой угол - средний по величине.

ВверхВниз   Решение


В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на утренний сеанс, а потом на вечерний.
Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.

ВверхВниз   Решение


Бумажный треугольник с углами 20°, 20°, 140° разрезается по одной из своих биссектрис на два треугольника, один из которых также разрезается по биссектрисе, и так далее. Может ли после нескольких разрезов получиться треугольник, подобный исходному?

ВверхВниз   Решение


В треугольнике ABC провели биссектрисы BB' и CC', а затем стёрли весь рисунок, кроме точек A, B' и C'.
Восстановите треугольник ABC при помощи циркуля и линейки.

ВверхВниз   Решение


Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали на одной прямой, но из любых шести нашлись 3, лежащие на одной прямой. (На рисунке проведите все прямые, на которых лежат по три отмеченные точки.)

ВверхВниз   Решение


Мартышка, Осёл и Козёл затеяли сыграть трио. Уселись чинно в ряд, Мартышка справа. Ударили в смычки, дерут, а толку нет. Поменялись местами, при этом Осёл оказался в центре. А трио всё нейдёт на лад. Пересели ещё раз. При этом оказалось, что каждый из трёх "музыкантов" успел посидеть и слева, и справа, и в центре. Кто где сидел на третий раз?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116809  (#1)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3-
Классы: 6,7

Мартышка, Осёл и Козёл затеяли сыграть трио. Уселись чинно в ряд, Мартышка справа. Ударили в смычки, дерут, а толку нет. Поменялись местами, при этом Осёл оказался в центре. А трио всё нейдёт на лад. Пересели ещё раз. При этом оказалось, что каждый из трёх "музыкантов" успел посидеть и слева, и справа, и в центре. Кто где сидел на третий раз?

Прислать комментарий     Решение

Задача 116810  (#2)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Осевая и скользящая симметрии (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?

Прислать комментарий     Решение

Задача 116811  (#3)

Темы:   [ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?

Прислать комментарий     Решение

Задача 116812  (#4)

Темы:   [ Взвешивания ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9,10,11

Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:

Могло ли такое быть?

Прислать комментарий     Решение

Задача 116813  (#5)

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .