Страница:
<< 1 2
3 >> [Всего задач: 15]
Задача
116989
(#10.2.2)
|
|
Сложность: 3+ Классы: 9,10,11
|
Центр О окружности, описанной около четырёхугольника АВСD, лежит внутри него. Найдите площадь четырёхугольника, если ∠ВАО = ∠DAC,
AC = m, BD = n.
Задача
116990
(#10.2.3)
|
|
Сложность: 3- Классы: 9,10,11
|
Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?
Задача
116991
(#10.3.1)
|
|
Сложность: 3 Классы: 9,10,11
|
Найдите наибольшее значение выражения ab + bc + ac + abc,
если a + b + c = 12 (a, b и с – неотрицательные числа).
Задача
116992
(#10.3.2)
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике АВС проведена биссектриса АА1. Докажите, что серединный перпендикуляр к АА1, перпендикуляр к ВС, проходящий через точку А1, и прямая АО (О – центр описанной окружности) пересекаются в одной точке.
Задача
116994
(#10.4.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть x1, x2, ..., xn – некоторые числа, принадлежащие отрезку [0, 1].
Докажите, что на этом отрезке найдется такое число x, что
1/n (|x – x1| + |x – x2| + ... + |x – xn|) = ½.
Страница:
<< 1 2
3 >> [Всего задач: 15]