ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что число всех цифр в последовательности 1, 2, 3,..., 10k равно числу всех нулей в последовательности 1, 2, 3,..., 10k + 1. Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов? Существует ли такое натуральное x, что x² + x + 1 делится на 1985? Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно. Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат? В каком из выражений: (1 – x² + x³)1000, (1 + x² – x³)1000 после раскрытия скобок и приведения подобных членов больший коэффициент при x20? Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом. |
Страница: 1 [Всего задач: 5]
Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым.
Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Из всех параллелограммов данной площади найти тот, у которого наибольшая диагональ минимальна.
В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел
любой строки равно числу, стоящему на их пересечении.
Известно, что ax4 + bx³ + cx² + dx + e, где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке