Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Медиана AM треугольника ABC перпендикулярна его биссектрисе BK. Найдите AB, если  BC = 12.

Вниз   Решение


Восстановите цифры. Восстановите цифры в следующем примере на деление


ВверхВниз   Решение


Докажите, что все числа вида 1156, 111556, 11115556,... являются точными квадратами.

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20.  33 богатыря передают листок друг другу, и каждый или прибавляет к числу, или отнимает от него единицу. Может ли в результате получиться число 10?

ВверхВниз   Решение


Доказать, что  (1 + ⅓)(1 + ⅛)(1 + 1/15)...(1 + 1/n²+2n) < 2  при любом натуральном n.

ВверхВниз   Решение


В четырёхугольнике MNPQ расположены две непересекающиеся окружности так, что одна из них касается сторон MN, NP, PQ, а другая – сторон MN, MQ, PQ. Точки B и A лежат соответственно на сторонах MN и PQ, причём отрезок AB касается обеих окружностей. Найдите длину стороны MQ, если  NP = b  и периметр четырёхугольника BAQM больше периметра четырёхугольника ABNP на величину 2p.

ВверхВниз   Решение


Хорда, перпендикулярная диаметру окружности, делит его в отношении  1 : 3.  Под какими углами видна хорда из концов этого диаметра?

ВверхВниз   Решение


На сколько нулей оканчивается число 100!?

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 559]      



Задача 116533  (#005)

Темы:   [ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наименьшее натуральное значение n, при котором число n! делится на 990.

Прислать комментарий     Решение

Задача 30363  (#006)

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Может ли n! оканчиваться ровно на пять нулей?

Прислать комментарий     Решение

Задача 30364  (#007)

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

На сколько нулей оканчивается число 100!?

Прислать комментарий     Решение

Задача 30365  (#008)

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 6,7,8

Докажите, что число, имеющее нечётное число делителей, является точным квадратом.

Прислать комментарий     Решение

Задача 30366  (#009)

Темы:   [ Признаки делимости на 11 ]
[ Ребусы ]
Сложность: 2+
Классы: 6,7,8

Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось  АБ×ВГ = ДДЕЕ.  Докажите, что он где-то ошибся.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .