|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Доказать, что число всех цифр в последовательности 1, 2, 3,..., 10k равно числу всех нулей в последовательности 1, 2, 3,..., 10k + 1. Найти последнюю цифру числа 71988 + 91988. Докажите, что n³ + 2 не делится на 9 ни при каком натуральном n. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]
Докажите, что n5 + 4n делится на 5 при любом натуральном n.
Докажите, что n² + 1 не делится на 3 ни при каком натуральном n.
Докажите, что n³ + 2 не делится на 9 ни при каком натуральном n.
Докажите, что n³ – n делится на 24 при любом нечётном n.
а) Докажите, что p² – 1 делится на 24, если p – простое число и p > 3.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|