ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите следующие формулы: an+1 – bn+1 = (a – b)(an + an–1b + ... + bn); a2n+1 + b2n+1 = (a + b)(a2n – a2n–1b + a2n–2b2 – ... + b2n). Натуральные числа x, y, z таковы, что x² + y² = z². Докажите, что хотя бы одно из этих чисел делится на 3. Докажите, что при центральной симметрии окружность переходит в окружность.
Из пункта A в пункт B выехал велосипедист. Одновременно из пункта B в пункт A навстречу велосипедисту вышел пешеход. После их встречи велосипедист повернул обратно, а пешеход продолжил свой путь. Известно, что велосипедист вернулся в пункт A на 30 минут раньше пешехода, при этом его скорость была в 5 раз больше скорости пешехода. Сколько времени затратил пешеход на путь из A в B? Стороны BA, AC и CB равностороннего треугольника продолжены соответственно за точки A, C и B, на продолжениях отложены равные отрезки AD, CE и BF. Докажите, что треугольник DEF – равносторонний. a и b – натуральные числа, причём число a² + b² делится на 21. Докажите, что оно делится и на 441. Прямая, проходящая через центры двух окружностей называется их линией центров. Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?
Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.
В забеге шести спортсменов Андрей отстал от Бориса и между ними финишировали два спортсмена. Виктор финишировал после Дмитрия, но ранее Геннадия. Дмитрий опередил Бориса, но все же пришел после Евгения. Какое место занял каждый спортсмен? a, b, c – целые числа, причём a + b + c делится на 6. Докажите, что a³ + b³ + c³ тоже делится на 6. |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 559]
Докажите, что n³ – n делится на 24 при любом нечётном n.
а) Докажите, что p² – 1 делится на 24, если p – простое число и p > 3.
Натуральные числа x, y, z таковы, что x² + y² = z². Докажите, что хотя бы одно из этих чисел делится на 3.
a и b – натуральные числа, причём число a² + b² делится на 21. Докажите, что оно делится и на 441.
a, b, c – целые числа, причём a + b + c делится на 6. Докажите, что a³ + b³ + c³ тоже делится на 6.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 559]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке