Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

Вниз   Решение


Натуральные числа x, y, z таковы, что  x² + y² = z².  Докажите, что хотя бы одно из этих чисел делится на 3.

ВверхВниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

ВверхВниз   Решение


Из пункта A в пункт B выехал велосипедист. Одновременно из пункта B в пункт A навстречу велосипедисту вышел пешеход. После их встречи велосипедист повернул обратно, а пешеход продолжил свой путь. Известно, что велосипедист вернулся в пункт A на 30 минут раньше пешехода, при этом его скорость была в 5 раз больше скорости пешехода. Сколько времени затратил пешеход на путь из A в B?

ВверхВниз   Решение


Стороны BA, AC и CB равностороннего треугольника продолжены соответственно за точки A, C и B, на продолжениях отложены равные отрезки AD, CE и BF. Докажите, что треугольник DEF – равносторонний.

ВверхВниз   Решение


a и b – натуральные числа, причём число  a² + b²  делится на 21. Докажите, что оно делится и на 441.

ВверхВниз   Решение


Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

ВверхВниз   Решение


Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?

ВверхВниз   Решение


Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

ВверхВниз   Решение


В забеге шести спортсменов Андрей отстал от Бориса и между ними финишировали два спортсмена. Виктор финишировал после Дмитрия, но ранее Геннадия. Дмитрий опередил Бориса, но все же пришел после Евгения. Какое место занял каждый спортсмен?

ВверхВниз   Решение


a, b, c – целые числа, причём  a + b + c  делится на 6. Докажите, что  a³ + b³ + c³  тоже делится на 6.

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 559]      



Задача 30377  (#020)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что  n³ – n  делится на 24 при любом нечётном n.

Прислать комментарий     Решение

Задача 30378  (#021)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

а) Докажите, что  p² – 1  делится на 24, если p – простое число и  p > 3.
б) Докажите, что  p² – q²  делится на 24, если p и q – простые числа, большие 3.

Прислать комментарий     Решение

Задача 30379  (#022)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9

Натуральные числа x, y, z таковы, что  x² + y² = z².  Докажите, что хотя бы одно из этих чисел делится на 3.

Прислать комментарий     Решение

Задача 30380  (#023)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

a и b – натуральные числа, причём число  a² + b²  делится на 21. Докажите, что оно делится и на 441.

Прислать комментарий     Решение

Задача 30381  (#024)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9

a, b, c – целые числа, причём  a + b + c  делится на 6. Докажите, что  a³ + b³ + c³  тоже делится на 6.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .