|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны точки A(4;1), B(- 8;0) и C(0; - 6). Составьте уравнение прямой, на которой лежит медиана AM треугольника ABC.
Пусть дан выпуклый (2n + 1)-угольник A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с вершинами в его вершинах наибольшую длину имеет ломаная A1A2A3...A2n + 1A1. Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.
Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD. Остаток от деления натурального числа Х на 26 равен неполному частному, остаток от деления Х на 29 также равен неполному частному. Докажите, что если длины сторон треугольника связаны неравенством a2 + b2 > 5c2, то c — длина наименьшей стороны. В некоторый момент угол между часовой и минутной стрелками равен α. Через час он опять равен α. Найдите все возможные значения α. В. треугольнике длины двух сторон равны 3, 14 и 0, 67. Найдите длину третьей стороны, если известно, что она является целым числом. Даны точки A(- 2;2), B(- 2; - 2) и C(6;6). Составьте уравнения прямых, на которых лежат стороны треугольника ABC.
Ладья стоит на поле a1. За ход разрешается сдвинуть ее на любое число клеток вправо или на любое число клеток вверх. Выигрывает тот, кто поставит ладью на поле h8. |
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 559]
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 559] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|