Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

В вершинах куба расставили числа 1², 2², ..., 8² (в каждую из вершин – по одному числу). Для каждого ребра посчитали произведение чисел в его концах. Найдите наибольшую возможную сумму всех этих произведений.

Вниз   Решение


Докажите равенства
а) $ \sqrt[4]{\dfrac{7+3\sqrt5}{2}}$ - $ \sqrt[4]{\dfrac{7-3\sqrt5}{2}}$ = 1;
б) $ \sqrt[5]{\dfrac{11+5\sqrt5}{2}}$ + $ \sqrt[9]{\dfrac{76-34\sqrt5}{2}}$ = 1.
Найдите общую формулу, для которой данные равенства являются частными случаями.

ВверхВниз   Решение


Докажите, что граф с n вершинами, степень каждой из которых не менее n–1/2, связен.

ВверхВниз   Решение


План города имеет схему, изображенную на рисунке.

На всех улицах введено одностороннее движение: можно ехать только "вправо" или "вверх".
Сколько есть разных маршрутов, ведущих из точки A в точку B.

ВверхВниз   Решение


Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?

ВверхВниз   Решение


Сколькими способами можно выбрать из полной колоды (52 карты) 10 карт так, чтобы
  а) среди них был ровно один туз?
  б) среди них был хотя бы один туз?

ВверхВниз   Решение


Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?

ВверхВниз   Решение


Человек имеет шесть друзей и в течение пяти дней приглашает к себе в гости каких-то троих из них так, чтобы компания ни разу не повторялась.
Сколькими способами он может это сделать?

ВверхВниз   Решение


В стране из каждого города выходит 100 дорог и от каждого города можно добраться до любого другого. Одну дорогу закрыли на ремонт.
Докажите, что и теперь от каждого города можно добраться до любого другого.

ВверхВниз   Решение


Вычислите сумму:  

ВверхВниз   Решение


Рассмотрим множество последовательностей длины n, состоящих из 0 и 1, в которых не бывает двух 1 стоящих рядом. Докажите, что количество таких последовательностей равно Fn + 2. Найдите взаимно-однозначное соответствие между такими последовательностями и маршрутами кузнечика из задачи 3.109.

ВверхВниз   Решение


Докажите, что из n предметов чётное число предметов можно выбрать 2n–1 способами.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 55]      



Задача 30708  (#022)

Темы:   [ Правило произведения ]
[ Теория множеств (прочее) ]
Сложность: 2+
Классы: 6,7

Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

Прислать комментарий     Решение

Задача 30710  (#024)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Целочисленные решетки (прочее) ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 7,8

План города имеет схему, изображенную на рисунке.

На всех улицах введено одностороннее движение: можно ехать только "вправо" или "вверх".
Сколько есть разных маршрутов, ведущих из точки A в точку B.

Прислать комментарий     Решение

Задача 30711  (#025)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Докажите, что из n предметов чётное число предметов можно выбрать 2n–1 способами.

Прислать комментарий     Решение

Задача 30712  (#026)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9

Докажите, что  

Прислать комментарий     Решение

Задача 30713  (#027)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Целочисленные решетки (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что каждое число a в треугольнике Паскаля равно
  а) сумме чисел предыдущей правой диагонали, начиная с самого левого вплоть до стоящего справа над числом a.
  б) сумме чисел предыдущей левой диагонали, начиная с самого правого вплоть до стоящего слева над числом a.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .