ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов? В шахматном кружке занимаются 2 девочки и 7 мальчиков. Для участия в соревновании необходимо составить команду из четырёх человек, в которую обязательно должна входить хотя бы одна девочка. Сколькими способами это можно сделать? Докажите справедливость формулы На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем
AC1 = AB1, BA1 = BC1 и CA1 = CB1.
Докажите, что A1, B1 и C1 — точки касания вписанной
окружности со сторонами.
Сколькими способами можно разбить 10 человек на две баскетбольные команды по 5 человек в каждой?
Чему равны числа Фибоначчи с отрицательными
номерами F-1, F-2, ..., F-n,...?
На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что AB = AK. Отрезок AK пересекает биссектрису CL в её середине. Тождество Кассини. Докажите равенство
Fn + 1Fn - 1 - Fn2 = (- 1)n (n > 0).
Будет ли тождество Кассини справедливо для всех целых n? Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон? а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем? б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки? в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?
В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.
Верно ли, что два графа изоморфны, если |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.
Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.
Верно ли, что два графа изоморфны, если
В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4.
Докажите, что граф, в котором каждые две вершины соединены ровно одним простым путем, является деревом.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке