ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Значение многочлена Pn(x) = anxn + an–1xn–1 + ... + a1x + a0 (an ≠ 0) в точке x = c можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде Pn(x) = (...(anx + an–1)x + ... + a1)x + a0. Пусть bn, bn–1, ..., b0 – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть bn = an, bk = cbk+1 + ak (k = n – 1, ..., 0). Докажите, что при делении многочлена Pn(x) на x – c с остатком, у многочлена в частном коэффициенты будут совпадать с числами bn–1, ..., b1, а остатком будет число b0. Таким образом, будет справедливо равенство: На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что AB = AK. Отрезок AK пересекает биссектрису CL в её середине. Докажите, что для любого натурального числа n > 1 найдутся такие натуральные числа a, b, c, d, что a + b = c + d = ab – cd = 4n. На сторонах произвольного треугольника ABC вне
его построены равнобедренные треугольники A'BC, AB'C
и ABC' с вершинами A', B' и C' и углами При каких n многочлен 1 + x² + x4 + ... + x2n–2 делится на 1 + x + x2 + ... + xn–1? Докажите, что 2(x² + y²) ≥ (x + y)² при любых x и y. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]
Рассмотрим число а) меньше 1/10; б) меньше 1/12; в) больше 1/15.
Докажите, что
Докажите, что x + 1/x ≥ 2 при x > 0.
Докажите, что ½ (x² + y²) ≥ xy при любых x и y.
Докажите, что 2(x² + y²) ≥ (x + y)² при любых x и y.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке