ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры. Найти наименьшее натуральное N, дающее остаток 1 по модулю 2, 2 по модулю 3, ..., 7 по модулю 8. Найти последнюю цифру числа 1·2 + 2·3 + ... + 999·1000. Число x оканчивается на 5. Доказать, что x² оканчивается на 25. Существует ли такое натуральное x, что x² + x + 1 делится на 1985? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]
Существует ли такое натуральное x, что x² + x + 1 делится на 1985?
Число x оканчивается на 5. Доказать, что x² оканчивается на 25.
Найти последнюю цифру числа 71988 + 91988.
Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.
Найти последнюю цифру числа 1·2 + 2·3 + ... + 999·1000.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке