Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Касательные к описанной окружности треугольника ABC в точках B и C пересекаются в точке P. Точка Q симметрична точке A относительно середины отрезка BC. Докажите, что точки P и Q изогонально сопряжены.

Вниз   Решение


В следующих многозначных числах цифры заменены буквами (одинаковые цифры – одинаковыми буквами, а разные цифры – разными буквами). Оказалось, что ДЕВЯНОСТО делится на 90, а ДЕВЯТКА делится на 9. Может ли СОТКА делиться на 9?

ВверхВниз   Решение


Найдите ГМТ X, лежащих внутри правильного треугольника ABC и обладающих тем свойством, что  $ \angle$XAB + $ \angle$XBC + $ \angle$XCA = 90o.

ВверхВниз   Решение


Четырехугольник ABCD вписанный; Hc и Hd — ортоцентры треугольников ABD и ABC. Докажите, что CDHcHd — параллелограмм.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.

ВверхВниз   Решение


При каких целых значениях m число Р = 1 + 2m + 3m2 + 4m3 + 5m4 + 4m5 + 3m6 + 2m7 + m8 является квадратом целого числа?

ВверхВниз   Решение


Окружности S1 и S2, S2 и S3, S3 и S4, S4 и S1 касаются внешним образом. Докажите, что четыре общие касательные (в точках касания окружностей) либо пересекаются в одной точке, либо касаются одной окружности.

ВверхВниз   Решение


Доказать: произведение
  а) двух нечётных чисел нечётно;
  б) чётного числа с любым целым числом чётно.

ВверхВниз   Решение


Постройте квадрат, три вершины которого лежат на трёх данных параллельных прямых.

ВверхВниз   Решение


На стороне AB треугольника ABC дана точка P. Проведите через точку P прямую (отличную от AB), пересекающую лучи CA и CB в таких точках M и N, что AM = BN.

ВверхВниз   Решение


Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 644]      



Задача 33134

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

Прислать комментарий     Решение

Задача 33135

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать: произведение
  а) двух нечётных чисел нечётно;
  б) чётного числа с любым целым числом чётно.
Прислать комментарий     Решение


Задача 35625

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на работу ]
[ Задачи-шутки ]
Сложность: 2
Классы: 7,8,9

Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?

Прислать комментарий     Решение

Задача 35805

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7

За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.

Прислать комментарий     Решение

Задача 35818

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7

Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .