Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Напишите в строку пять чисел, чтобы сумма каждых двух соседних чисел была отрицательна, а сумма всех чисел – положительна.

Вниз   Решение


На шахматной доске 5×5 клеток расставили 25 шашек – по одной на каждой клетке. Потом все шашки сняли с доски, но запомнили, на какой клетке стояла каждая. Можно ли ещё раз расставить шашки на доске таким образом, чтобы каждая шашка стояла на клетке, соседней с той, на которой она стояла в прошлый раз (соседняя по горизонтали или вертикали, но не наискосок)?

ВверхВниз   Решение


Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру.

ВверхВниз   Решение


Замените в выражении  ABC = DEF  буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз.
(ABC – двузначное число из цифр A и B, возведённое в степень C. Достаточно привести один способ замены.)

ВверхВниз   Решение


Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается извне третьей окружности радиуса R в точках A и B соответственно.
Найдите радиус r, если  AB = 12,  R = 8.

ВверхВниз   Решение


Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что  ∠AOD = 3∠ACD.

ВверхВниз   Решение


Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды.

ВверхВниз   Решение


Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

Вверх   Решение

Задачи

Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 7526]      



Задача 35183

Тема:   [ Гомотетичные окружности ]
Сложность: 3
Классы: 9,10

Внутри угла расположены три окружности S1, S2, S3, каждая из которых касается двух сторон угла, причем окружность S2 касается внешним образом окружностей S1 и S3. Известно, что радиус окружности S1 равен 1, а радиус окружности S3 равен 9. Чему равен радиус окружности радиус окружности S2?
Прислать комментарий     Решение


Задача 35192

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9

Сколько целых чисел от 1 до 2001 имеют сумму цифр, делящуюся на 5?

Прислать комментарий     Решение

Задача 35198

Темы:   [ Теория алгоритмов (прочее) ]
[ Таблицы и турниры (прочее) ]
Сложность: 3
Классы: 7,8,9

Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет?

Прислать комментарий     Решение

Задача 35235

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9

Найдите все натуральные n, для которых  2nn².

Прислать комментарий     Решение

Задача 35261

Темы:   [ Делимость чисел. Общие свойства ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7,8

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

Прислать комментарий     Решение

Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .