ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (прямая Симсона.)

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 132]      



Задача 52421

Темы:   [ Прямая Симсона ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5-
Классы: 8,9,10

Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (прямая Симсона.)

Прислать комментарий     Решение


Задача 109043

Темы:   [ Числа Фибоначчи ]
[ Системы счисления (прочее) ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 8,9,10

Дан ряд чисел 1,1,2,3,5,8,13,21,34,..., каждое из которых, начиная с третьего, равно сумме двух предыдущих. Доказать, что каждое натуральное число n>2 равно сумме нескольких различных чисел указанного ряда.
Прислать комментарий     Решение


Задача 109170

Темы:   [ Вычисление объемов ]
[ ГМТ в пространстве (прочее) ]
[ Объем круглых тел ]
Сложность: 5-
Классы: 10,11

На плоскости дан квадрат со стороной a . Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше a .
Прислать комментарий     Решение


Задача 108980

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
[ Окружности (построения) ]
Сложность: 5
Классы: 8,9

В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.
Прислать комментарий     Решение


Задача 108981

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Перенос помогает решить задачу ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Симметрия и построения ]
Сложность: 5
Классы: 8,9

Дан острый угол ABC . На стороне BC отложены отрезки BD= 4 см и BE= 14 см. Найти на стороне BA такие две точки M и N , чтобы MN=3 см и DMN= MNE .
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .