ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подисточники:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).
Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (прямая Симсона.)
|
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 132]
Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (прямая Симсона.)
Дан ряд чисел 1,1,2,3,5,8,13,21,34,..., каждое из которых, начиная с третьего, равно сумме двух предыдущих. Доказать, что каждое натуральное число n>2 равно сумме нескольких различных чисел указанного ряда.
На плоскости дан квадрат со стороной a . Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше a .
В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.
Дан острый угол ABC . На стороне BC отложены отрезки BD= 4 см
и BE= 14 см. Найти на стороне BA такие две точки M и N ,
чтобы MN=3 см и
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 132]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке