ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456? Пусть α – действительное положительное число, d – натуральное. Может ли быть так, что а) σ(n) > 3n; б) σ(n) > 100n? Врун всегда лжёт, Хитрец говорит правду или ложь, когда захочет, а Переменчик говорит то правду, то ложь попеременно. Путешественник встретил Вруна, Хитреца и Переменчика, которые знают друг друга. Сможет ли он, задавая им вопросы, выяснить, кто есть кто? Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр. В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра AD . Найдите расстояние от середины ребра AB до плоскости P , если ребро куба равно 3.
В треугольнике ABC стороны AC и BC не равны. Докажите, что
биссектриса угла C делит пополам угол между медианой и высотой,
проведёнными из вершины C, тогда и только тогда, когда
|
Страница: 1 [Всего задач: 5]
Известно, что в некотором треугольнике медиана,
биссектриса и высота, проведенные из вершины C, делят угол
на четыре равные части. Найдите углы этого треугольника.
Докажите, что в любом треугольнике ABC
биссектриса AE лежит между медианой AM и высотой AH.
Дан треугольник ABC. На его стороне AB
выбирается точка P и через нее проводятся прямые PM и PN,
параллельные AC и BC соответственно (точки M и N лежат
на сторонах BC и AC); Q — точка пересечения описанных
окружностей треугольников APN и BPM. Докажите, что все
прямые PQ проходят через фиксированную точку.
Продолжение биссектрисы AD остроугольного
треугольника ABC пересекает описанную окружность в точке E.
Из точки D на стороны AB и AC опущены перпендикуляры DP
и DQ. Докажите, что
SABC = SAPEQ.
В треугольнике ABC стороны AC и BC не равны. Докажите, что
биссектриса угла C делит пополам угол между медианой и высотой,
проведёнными из вершины C, тогда и только тогда, когда
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке