|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На сторонах произвольного остроугольного треугольника ABC как на диаметрах построены окружности. При этом образуется три к внешнихк криволинейных треугольника и один к внутреннийк (рис.). Докажите, что если из суммы площадей к внешнихк треугольников вычесть площадь к внутреннегок треугольника, то получится удвоенная площадь треугольника ABC. Докажите, что если M' и N' — образы многоугольников M и N при аффинном преобразовании, то отношение площадей M и N равно отношению площадей M' и N'. Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.
|
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 6702]
Внутри данной окружности находится другая окружность; ABC и ADE — хорды большей окружности, касающиеся меньшей окружности в точках B и D; BMD — меньшая из двух дуг между точками касания; CNE — дуга между концами хорд. Найдите угловую величину дуги CNE, если дуга BMD содержит 130o.
Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.
Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключённые между между окружностями, равны.
В равнобедренный прямоугольный треугольник вписан прямоугольник так, что две его вершины находятся на гипотенузе, а две другие — на катетах. Найдите стороны прямоугольника, если известно, что они относятся как 5:2, а гипотенуза треугольника равна 45.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 6702] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|