Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Напишите в строку пять чисел, чтобы сумма каждых двух соседних чисел была отрицательна, а сумма всех чисел – положительна.

Вниз   Решение


На шахматной доске 5×5 клеток расставили 25 шашек – по одной на каждой клетке. Потом все шашки сняли с доски, но запомнили, на какой клетке стояла каждая. Можно ли ещё раз расставить шашки на доске таким образом, чтобы каждая шашка стояла на клетке, соседней с той, на которой она стояла в прошлый раз (соседняя по горизонтали или вертикали, но не наискосок)?

ВверхВниз   Решение


Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру.

ВверхВниз   Решение


Замените в выражении  ABC = DEF  буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз.
(ABC – двузначное число из цифр A и B, возведённое в степень C. Достаточно привести один способ замены.)

ВверхВниз   Решение


Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается извне третьей окружности радиуса R в точках A и B соответственно.
Найдите радиус r, если  AB = 12,  R = 8.

ВверхВниз   Решение


Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что  ∠AOD = 3∠ACD.

ВверхВниз   Решение


Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды.

ВверхВниз   Решение


Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

ВверхВниз   Решение


Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах равные отрезки.
Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


Сколькими способами из полной колоды (52 карты) можно выбрать
  а) 4 карты разных мастей и достоинств?
  б) 6 карт так, чтобы среди них были представители всех четырех мастей?

ВверхВниз   Решение


На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

ВверхВниз   Решение


В параллелограмме ABCD острый угол равен α . Окружность радиуса r проходит через вершины A , B , C и пересекает прямые AD и CD в точках M и N . Найдите площадь треугольника BMN .

Вверх   Решение

Задачи

Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 6702]      



Задача 52827

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD острый угол равен α . Окружность радиуса r проходит через вершины A , B , C и пересекает прямые AD и CD в точках M и N . Найдите площадь треугольника BMN .
Прислать комментарий     Решение


Задача 52830

Темы:   [ Признаки подобия ]
[ Теорема косинусов ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3
Классы: 8,9

В треугольнике ABC на средней линии DE, параллельной AB, как на диаметре построена окружность, пересекающая стороны AC и BC в точках M и N.
Найдите MN, если  BC = a,  AC = b,  AB = c.

Прислать комментарий     Решение

Задача 52845

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3
Классы: 8,9

Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.

Прислать комментарий     Решение

Задача 52868

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении 12 : 5, а боковая сторона равна 60. Найдите основание.

Прислать комментарий     Решение

Задача 52870

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Хорды AB, AC и BC окружности равны соответственно 15, 21 и 24. Точка D – середина дуги CB. На какие части BE и EC делится хорда BC прямой AD?

Прислать комментарий     Решение

Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .