Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду?

Вниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Докажите, что если a и b – две стороны треугольника, γ – угол между ними и l – биссектриса этого угла, то

l = .

ВверхВниз   Решение


С числом 123456789101112...9989991000 производится следующая операция: зачёркиваются две соседние цифры a и b (a стоит перед b) и на их место вставляется число a + 2b (можно в качестве a взять нуль, ``стоящий'' перед числом, а в качестве b — первую цифру числа). С полученным числом производится такая же операция и т.д. (Например, из числа 118 307 можно на первом шаге получить числа 218 307, 38 307, 117 307, 111 407, 11 837, 118 314.) Доказать, что таким способом можно получить число 1.

ВверхВниз   Решение


Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.

Вверх   Решение

Задачи

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 6702]      



Задача 52955

Темы:   [ Шестиугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 8,9

Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.

Прислать комментарий     Решение

Задача 52974

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В треугольнике ABC угол A – прямой, угол B равен 30°. В треугольник вписана окружность радиуса  .
Найдите расстояние от вершины C до точки касания этой окружности с катетом AB.

Прислать комментарий     Решение

Задача 52976

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В равнобедренном прямоугольном треугольнике радиус вписанной окружности равен 2.
Найдите расстояние от вершины острого угла до точки, в которой вписанная окружность касается противолежащего этому углу катета.

Прислать комментарий     Решение

Задача 52977

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9

В треугольнике ABC угол A прямой, катет AB равен a, радиус вписанной окружности равен r . Вписанная окружность касается катета AC в точке D.
Найдите хорду, соединяющую точки пересечения окружности с прямой BD.

Прислать комментарий     Решение

Задача 53026

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Прямоугольные треугольники (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 8,9

В окружность радиуса  3 +   вписан правильный шестиугольник ABCDEK. Найдите радиус вписанной окружности треугольника ACD.

Прислать комментарий     Решение

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .