ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Центры трёх попарно касающихся друг друга внешним образом окружностей расположены в точках A, B, C,  ∠ABC = 90°.  Точки касания – K, P и M; точка P лежит на стороне AC. Найдите угол KPM.

   Решение

Задачи

Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 6702]      



Задача 53557

Темы:   [ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Пусть P и Q – середины сторон AB и CD четырёхугольника ABCD, M и N – середины диагоналей AC и BD.
Докажите, что если MN и PQ перпендикулярны, то  BC = AD.

Прислать комментарий     Решение

Задача 53561

Темы:   [ Касающиеся окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Центры трёх попарно касающихся друг друга внешним образом окружностей расположены в точках A, B, C,  ∠ABC = 90°.  Точки касания – K, P и M; точка P лежит на стороне AC. Найдите угол KPM.

Прислать комментарий     Решение

Задача 53563

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3
Классы: 8,9

Найдите сумму внешних углов выпуклого n-угольника, взятых по одному при каждой вершине.

Прислать комментарий     Решение

Задача 53564

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

Докажите, что у выпуклого многоугольника может быть не более трёх острых углов.

Прислать комментарий     Решение

Задача 53581

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

Через вершину C параллелограмма ABCD проведена произвольная прямая, пересекающая продолжения сторон AB и AD в точках K и M соответственно. Докажите, что произведение BK·DM не зависит от того, как проведена эта прямая.

Прислать комментарий     Решение

Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .