Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.

Вниз   Решение


В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны   и  .  Найдите гипотенузу треугольника.

ВверхВниз   Решение


На плоскости даны три точки A, B, C и три угла $ \angle$D, $ \angle$E, $ \angle$F, меньшие 180o и в сумме равные 360o. Построить с помощью линейки и транспортира точку O плоскости такую, что $ \angle$AOB = $ \angle$D, $ \angle$BOC = $ \angle$E, $ \angle$COA = $ \angle$F (с помощью транспортира можно измерять и откладывать углы).

ВверхВниз   Решение


Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.

ВверхВниз   Решение


Имеются две концентрические окружности. Вокруг меньшей из них описан многоугольник, целиком находящийся внутри большей окружности. Из общего центра на стороны многоугольника опущены перпендикуляры, которые продолжены до пересечения с большей окружностью; каждая из полученных точек пересечения соединена с концами соответствующей стороны многоугольника. При каком условии построенный так звёздчатый многоугольник будет развёрткой пирамиды?

ВверхВниз   Решение


Среди 4-х людей нет трех с одинаковым именем, одинаковым отчеством или одинаковой фамилией, но у любых двух людей совпадают либо имя, либо отчество, либо фамилия. Может ли так быть?

ВверхВниз   Решение


Одна из сторон треугольника равна 6, вторая сторона равна 2$ \sqrt{7}$, а противолежащий ей угол равен 60o. Найдите третью сторону треугольника.

ВверхВниз   Решение


Пусть O — центр окружности, описанной около треугольника ABC , AOC = 60o . Найдите угол AMC , где M — центр окружности, вписанной в треугольник ABC .

ВверхВниз   Решение


Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км?

ВверхВниз   Решение


CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .

Вверх   Решение

Задачи

Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 6702]      



Задача 53989

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .
Прислать комментарий     Решение


Задача 53993

Темы:   [ Общая касательная к двум окружностям ]
[ Три точки, лежащие на одной прямой ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

Прислать комментарий     Решение

Задача 53999

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

Две окружности касаются друг друга внутренним образом. Известно, что два радиуса большей окружности, угол между которыми равен 60o , касаются меньшей окружности. Найдите отношение радиусов окружностей.
Прислать комментарий     Решение


Задача 54011

Темы:   [ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Окружность, вписанная в треугольник ABC касается его сторон AB и AC соответственно в точках M и N. Докажите, что  BN > MN.

Прислать комментарий     Решение

Задача 54018

Темы:   [ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что  AB < BC < AC,  а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A.

Прислать комментарий     Решение

Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .