ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C. В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны
На плоскости даны три точки A, B, C и три угла Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых. Имеются две концентрические окружности. Вокруг меньшей из них описан многоугольник, целиком находящийся внутри большей окружности. Из общего центра на стороны многоугольника опущены перпендикуляры, которые продолжены до пересечения с большей окружностью; каждая из полученных точек пересечения соединена с концами соответствующей стороны многоугольника. При каком условии построенный так звёздчатый многоугольник будет развёрткой пирамиды? Среди 4-х людей нет трех с одинаковым именем, одинаковым отчеством или одинаковой фамилией, но у любых двух людей совпадают либо имя, либо отчество, либо фамилия. Может ли так быть?
Одна из сторон треугольника равна 6, вторая сторона равна 2
Пусть O — центр окружности, описанной около треугольника ABC ,
Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км? CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH . |
Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 6702]
CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .
Прямая, проходящая через центры двух окружностей называется их линией центров.
Две окружности касаются друг друга внутренним образом. Известно, что два радиуса большей окружности, угол между которыми равен 60o , касаются меньшей окружности. Найдите отношение радиусов окружностей.
Окружность, вписанная в треугольник ABC касается его сторон AB и AC соответственно в точках M и N. Докажите, что BN > MN.
В треугольнике ABC известно, что AB < BC < AC, а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A.
Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке