ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 104092

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Числовые неравенства. Сравнения чисел. ]
[ Иррациональные неравенства ]
Сложность: 3
Классы: 8,9,10

Сравните без помощи калькулятора числа:  .

Прислать комментарий     Решение

Задача 104097

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10,11

Даны квадратные трёхчлены  f и g с одинаковыми старшими коэффициентами. Известно, что сумма четырёх корней этих трёхчленов
равна р. Найдите сумму корней трёхчлена  f + g, если известно, что он имеет два корня.

Прислать комментарий     Решение

Задача 104102

Темы:   [ Монотонность и ограниченность ]
[ Тригонометрические уравнения ]
[ Смешанные уравнения и системы уравнений ]
Сложность: 3
Классы: 9,10

Решите систему уравнений:
    x² + 4sin²y – 4 = 0,
    cos x – 2cos²y – 1 = 0.

Прислать комментарий     Решение

Задача 54173

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Медиана, проведенная к гипотенузе ]
[ Ромбы. Признаки и свойства ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

Прислать комментарий     Решение

Задача 104093

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9,10

20 шахматистов сыграли турнир в один круг. Корреспондент "Спортивной газеты" написал в своей заметке, что каждый участник этого турнира выиграл столько же партий, сколько и свёл вничью. Докажите, что корреспондент ошибся.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .