Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.

Вниз   Решение


Каждая клетка клетчатой плоскости раскрашена в один из n² цветов так, что в каждом квадрате из клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в n цветов.

ВверхВниз   Решение


На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Петя купил в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может выполнять следующие операции: по любым числам x и y он вычисляет x + y, xy и $ {\frac{1}{x}}$ (при x ≠ 0). Петя утверждает, что он может возвести любое положительное число в квадрат с помощью своего микрокалькулятора, сделав не более 6 операций. А вы можете это сделать? Если да, то попробуйте перемножить любые два положительных числа, сделав не более 20 операций (промежуточные результаты можно записывать, неоднократно используя их в вычислениях).

ВверхВниз   Решение


Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.

ВверхВниз   Решение


Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

ВверхВниз   Решение


Двое играют в следующую игру. Каждый игрок по очереди вычёркивает 9 чисел (по своему выбору) из последовательности 1, 2, 3, ..., 100, 101. После одиннадцати таких вычёркиваний останутся два числа. Затем второй игрок присуждает первому столько очков, какова разница между этими оставшимися числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55 очков, как бы ни играл второй.

ВверхВниз   Решение


Два одинаковых прямоугольных треугольника из бумаги удалось положить один на другой так, как показано на рисунке (при этом вершина прямого угла одного попала на сторону другого). Докажите, что заштрихованный треугольник равносторонний.

ВверхВниз   Решение


Из натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969.

ВверхВниз   Решение


а) a, b, c — длины сторон треугольника. Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0.
б) Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0 для любых неотрицательных a, b, c.

ВверхВниз   Решение


В выпуклом четырёхугольнике ACBD, площадь которого равна 25, проведены диагонали. Известно, что  SABC = 2 SBCD,  а  SABD = 3 SACD.  Найдите площади треугольников ABC, ACD, ADB и BCD.

ВверхВниз   Решение


В равнобедренном треугольнике ABC  ∠B = arctg 8/15.  Окружность радиуса 1, вписанная в угол C, касается стороны CB в точке M и отсекает от основания отрезок KE. Известно, что  MB = 15/8.  Найдите площадь треугольника KMB, если известно, что точки A, K, E, B следуют на основании AB в указанном порядке.

ВверхВниз   Решение


Катеты прямоугольного треугольника равны a и b. Найдите длину биссектрису, проведённой из вершины прямого угла.

Вверх   Решение

Задачи

Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 6702]      



Задача 55170

Тема:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Внутри треугольника ABC взята точка M. Докажите, что угол BMC больше угла BAC.

Прислать комментарий     Решение

Задача 55205

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит  .

Прислать комментарий     Решение

Задача 55274

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Углы между биссектрисами ]
Сложность: 3
Классы: 8,9

Докажите, что если a и b – две стороны треугольника, γ – угол между ними и l – биссектриса этого угла, то

l = .

Прислать комментарий     Решение

Задача 55304

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Катеты прямоугольного треугольника равны a и b. Найдите длину биссектрису, проведённой из вершины прямого угла.

Прислать комментарий     Решение

Задача 55346

Темы:   [ Теорема косинусов ]
[ Ромбы. Признаки и свойства ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3
Классы: 8,9

В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении  AN : BN = 2 : 1.  Найдите тангенс угла DNC.

Прислать комментарий     Решение

Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .