Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]
Задача
111716
(#11)
|
|
Сложность: 4+ Классы: 8,9,10
|
Даны четыре точки
A ,
B ,
C ,
D . Известно, что
любые две окружности, одна из которых проходит через
A и
B , а
другая — через
C и
D , пересекаются. Докажите, что общие
хорды всех таких пар окружностей проходят через одну точку.
Задача
111717
(#12)
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется треугольник ABC. На луче BA отложим точку A1, так что отрезок BA1 равен BC. На луче CA отложим точку A2, так что отрезок C2 равен BC. Аналогично построим точки B1, B2 и C1, C2. Докажите, что прямые A1A2, B1B 2, C1C2 параллельны.
Задача
111718
(#13)
|
|
Сложность: 4+ Классы: 9,10
|
Дан треугольник
ABC . Вневписанная окружность касается
его стороны
BC в точке
A1 и продолжений двух других сторон.
Другая вневписанная окружность касается стороны
AC в точке
B1 . Отрезки
AA1 и
BB1 пересекаются в точке
N . На луче
AA1 отметили точку
P , такую что
AP=NA1 . Докажите, что
точка
P лежит на вписанной в треугольник окружности.
Задача
111719
(#14)
|
|
Сложность: 4+ Классы: 8,9,10
|
Прямая, соединяющая центр описанной окружности и точку
пересечения высот неравнобедренного треугольника, параллельна
биссектрисе одного из его углов. Чему равен этот угол?
Задача
55699
(#15)
|
|
Сложность: 5 Классы: 8,9
|
С помощью циркуля и линейки проведите через данную точку
прямую, на которой две данные окружности высекали бы равные
хорды.
Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]