ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите неравенство xαyβ ≤ αx + βy для положительных значений переменных при условии, что α + β = 1 (α, β > 0). Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
a, b, c ≥ 0. Докажите, что (a + b)(a + c)(b + c) ≥ 8abc. Все углы треугольника ABC меньше
120o.
Докажите, что внутри его существует точка, из которой все стороны
треугольника видны под углом
120o.
Докажите неравенство для положительных значений переменных: a²b² + b²c² + a²c² ≥ abc(a + b + c). Докажите, что при любых a, b, c имеет место неравенство a4 + b4 + c4 ≥ abc(a + b + c). На плоскости даны три вектора
a,
b,
c, причем
Дан треугольник ABC. Докажите, что существует
два семейства правильных треугольников, стороны которых
(или их продолжения) проходят через точки A, B и C.
Докажите также, что центры треугольников этих семейств
лежат на двух концентрических окружностях.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 104]
Две окружности пересекаются в точках P и Q. Третья окружность с центром P
пересекает первую окружность в точках A и B, а вторую — в точках C и
D. Докажите, что
Шестиугольник ABCDEF вписанный, причем
AB || DE
и
BC || EF. Докажите, что
CD || AF.
Многоугольник
A1A2...A2n вписанный. Про все
пары его противоположных сторон, кроме одной, известно, что они
параллельны. Докажите, что при n нечетном оставшаяся пара сторон тоже
параллельна, а при n четном оставшаяся пара сторон равна по длине.
Дан треугольник ABC. Докажите, что существует
два семейства правильных треугольников, стороны которых
(или их продолжения) проходят через точки A, B и C.
Докажите также, что центры треугольников этих семейств
лежат на двух концентрических окружностях.
На окружности даны точки A, B, C, D в указанном
порядке. M — середина дуги AB. Обозначим точки пересечения
хорд MC и MD с хордой AB через E и K. Докажите,
что KECD — вписанный четырехугольник.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 104]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке