ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что  AB1 : B1C = cn : an,  BC1 : C1A = an : bn  и  CA1 : A1B = bn : cn  (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что  

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 176]      



Задача 56891  (#05.054.1)

Темы:   [ Окружность, вписанная в угол ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9

В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.

Прислать комментарий     Решение

Задача 56892  (#05.055)

Темы:   [ Треугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9

На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что  AB1 : B1C = cn : an,  BC1 : C1A = an : bn  и  CA1 : A1B = bn : cn  (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что  

Прислать комментарий     Решение

Задача 56893  (#05.056)

 [Теорема Морли]
Темы:   [ Вспомогательные подобные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 9,10,11

В треугольнике ABC проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне BC триссектрисы углов B и C пересекаются в точке A1; аналогично определим точки B1 и C1 (см. рис.). Докажите, что треугольник A1B1C1 равносторонний.

Прислать комментарий     Решение

Задача 56894  (#05.057)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 8,9

На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники  A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём  α + β + γ = 60°.  Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ.

Прислать комментарий     Решение

Задача 56895  (#05.057.1)

Темы:   [ Окружность, вписанная в угол ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 8,9

Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус описанной окружности треугольника со сторонами     равен    где p – полупериметр треугольника ABC.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .