Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.

Вниз   Решение


Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.

ВверхВниз   Решение


Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.

ВверхВниз   Решение


На отрезке длиной 1 дано n точек. Докажите, что сумма расстояний от некоторой точки отрезка до этих точек не меньше n/2.

ВверхВниз   Решение


Остроугольный треугольник расположен внутри окружности. Докажите, что ее радиус не меньше радиуса описанной окружности треугольника.
Верно ли это утверждение для тупоугольного треугольника?

ВверхВниз   Решение


В лесу растут деревья цилиндрической формы. Связисту нужно протянуть провод из точки A в точку B, расстояние между которыми равно l. Докажите, что для этой цели ему достаточно куска провода длиной 1, 6l.

ВверхВниз   Решение


Докажите тождество: 1 . 2 . 3 + 2 . 3 . 4 +...+ n(n + 1)(n + 2) = $\displaystyle {\textstyle\frac{1}{4}}$n(n + 1)(n + 2)(n + 3).

ВверхВниз   Решение


В выпуклом четырехугольнике ABCD равны стороны AB и CD и углы A и C. Обязательно ли этот четырехугольник параллелограмм?

ВверхВниз   Решение


На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй.

ВверхВниз   Решение


а) Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K. Докажите, что описанная окружность треугольника CKE касается прямой BC.
б) Пусть a — длина стороны правильного пятиугольника, d — длина его диагонали. Докажите, что  d2 = a2 + ad.

ВверхВниз   Решение


Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?

ВверхВниз   Решение


Докажите, что правильный треугольник можно разрезать на n правильных треугольников для любого n, начиная с шести.

ВверхВниз   Решение


Докажите, что биссектрисы углов выпуклого четырехугольника образуют вписанный четырехугольник.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 57029

Тема:   [ Четырехугольники (прочее) ]
Сложность: 3
Классы: 9

Угол между сторонами AB и CD четырехугольника ABCD равен $ \varphi$. Докажите, что  AD2 = AB2 + BC2 + CD2 - 2(AB . BC cos B + BC . CD cos C + CD . AB cos$ \varphi$).
Прислать комментарий     Решение


Задача 57030

Тема:   [ Четырехугольники (прочее) ]
Сложность: 3
Классы: 9

В четырехугольнике ABCD стороны AB и CD равны, причем лучи AB и DC пересекаются в точке O. Докажите, что прямая, соединяющая середины диагоналей, перпендикулярна биссектрисе угла AOD.
Прислать комментарий     Решение


Задача 57031

Тема:   [ Четырехугольники (прочее) ]
Сложность: 3
Классы: 9

На сторонах BC и AD четырехугольника ABCD взяты точки M и N так, что  BM : MC = AN : ND = AB : CD. Лучи AB и DC пересекаются в точке O. Докажите, что прямая MN параллельна биссектрисе угла AOD.
Прислать комментарий     Решение


Задача 57032

Тема:   [ Четырехугольники (прочее) ]
Сложность: 4
Классы: 9

Докажите, что биссектрисы углов выпуклого четырехугольника образуют вписанный четырехугольник.
Прислать комментарий     Решение


Задача 57033

Тема:   [ Четырехугольники (прочее) ]
Сложность: 4
Классы: 9

Два различных параллелограмма ABCD и  A1B1C1D1 с соответственно параллельными сторонами вписаны в четырехугольник PQRS (точки A и A1 лежат на стороне PQB и B1 — на QR и т. д.). Докажите, что диагонали четырехугольника параллельны сторонам параллелограммов.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .